
www.manaraa.com

Introduction to Programming
(in C++)

Introduction

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC

www.manaraa.com

Outline

• Programming examples

• Algorithms, programming languages and
computer programs

• Steps in the design of a program

2© Dept. CS, UPCIntroduction to Programming

www.manaraa.com

First program in C++

#include <iostream>
using namespace std;

// This program reads two numbers and
// writes their sum

int main() {

int x, y;

cin >> x >> y;
int s = x + y;
cout << s << endl;

}

Introduction to Programming © Dept. CS, UPC 3

www.manaraa.comIntroduction to Programming © Dept. CS, UPC 4

cin

cout> sum
8 13
21
> sum
-15 9
-6
>

www.manaraa.com

Calculate xy

• Algorithm: repeated multiplication
x x x x

Introduction to Programming © Dept. CS, UPC 5

y times

y x i p=xi

4 3 0 1

4 3 1 3

4 3 2 9

4 3 3 27

4 3 4 81

www.manaraa.com

Calculate xy

#include <iostream>
using namespace std;

// Input: read two integer numbers, x and y,
// such that y >= 0
// Output: write xy

int main() {
int x, y;
cin >> x >> y;

int i = 0;
int p = 1;
while (i < y) { // Repeat several times (y)

i = i + 1;
p = px; // p = xi

}
cout << p << endl;

}

Introduction to Programming © Dept. CS, UPC 6

www.manaraa.com

Prime factors

• Decompose a number in prime factors

– Example: input 350 output 2 5 5 7

• Intuitive algorithm:

– Try all potential divisors d, starting from 2

• If divisible by d, divide and try again the same divisor

• If not divisible, go to the next divisor

– Keep dividing until the number becomes 1

Introduction to Programming © Dept. CS, UPC 7

www.manaraa.com

Prime factors
n d divisible write

350 2 yes 2

175 2 no

175 3 no

175 4 no

175 5 yes 5

35 5 yes 5

7 5 no

7 6 no

7 7 yes 7

1 finish

Introduction to Programming © Dept. CS, UPC 8

The algorithm will never write a non-prime factor. Why ?

www.manaraa.com

Prime factors
#include <iostream>
using namespace std;

// Input: read a natural number n > 0
// Output: write the decomposition in prime factors

int main() {
int n;
cin >> n;
int d = 2; // Variable to store divisors

// Divide n by divisors from 2 in ascending order
while (n != 1) {

if (n%d == 0) { // Check if divisible
cout << d << endl;
n = n/d;

}
else d = d + 1;

}
}

Introduction to Programming © Dept. CS, UPC 9

www.manaraa.com

ALGORITHMS, PROGRAMMING
LANGUAGES AND COMPUTER
PROGRAMS

Introduction to Programming © Dept. CS, UPC 10

www.manaraa.com

An algorithm

• An algorithm is a method for solving a
problem. It is usually described as a sequence
of steps.

• Example: How can we find out whether a
number is prime?
– Read the number (N).

– Divide N by all numbers between 2 and N-1 and
calculate the remainder of each division.

– If all remainders are different from zero, the
number is prime. Otherwise, the number is not
prime.

Introduction to Programming © Dept. CS, UPC 11

www.manaraa.com

A programming language

• A programming language is a language used to
describe instructions for a computer.

• What’s in a programming language?
– Data (numbers, strings, structures, …)
– Instructions (arithmetic, sequence, repetition, …)

• A programming language has very strict syntax
and semantics, as it must be understood by a
computer!

Introduction to Programming © Dept. CS, UPC 12

www.manaraa.com

A computer program

• A computer program is an algorithm written in a in a
programming language that executes a certain task.

• Examples of tasks a computer program can execute:

– Calculate the square root of a number

– Find the number of times the word “equation” appears in
a math book

– Play a music file

– Find the shortest path between two cities

Introduction to Programming © Dept. CS, UPC 13

www.manaraa.com

A computer system

CPU

Instruction
Memory

Data
Memory

Input devices
(keyboard, mouse,
microphone, etc.)

Output devices
(display, printer,
speakers, etc.)

Program
(machine
language)

Program
(high-level
language)

Compiler

Loader

14© Dept. CS, UPCIntroduction to Programming

This course:
• Design of programs
• Language: C++

www.manaraa.com

High-level language
• Computers understand very low-level instructions

(machine language).

• Software is usually constructed using high-level languages.
– Higher productivity
– Better readability
– Simpler debugging
– But some time and memory efficiency may be lost

• A compiler can translate a high-level language into machine
language automatically.

• There is a huge number of programming languages: C, C++, Java,
Pascal, PHP, Modula, Lisp, Python, Excel, Fortran, Cobol, APL, Basic,
Tcl, Ruby, Smalltalk, Haskell, Perl, SQL, Prolog, …

Introduction to Programming © Dept. CS, UPC 15

www.manaraa.com

Assembly and machine language

Introduction to Programming © Dept. CS, UPC 16

(From http://en.wikipedia.org/wiki/Assembly_language)

http://en.wikipedia.org/wiki/Assembly_language

www.manaraa.com

STEPS IN THE DESIGN OF A
PROGRAM

Introduction to Programming © Dept. CS, UPC 17

www.manaraa.com

Steps in the design of a program
1. Specification

– The task executed by the program must be described rigorously
(without ambiguities).

2. Design of the algorithm
– The method for executing the task must be selected and designed in

such a way that the program is correct according to the specification.

3. Coding in a programming language
– The algorithm must be written in a programming language that can

be executed by the computer.

4. Execution
– The program must be executed with a set of examples that

reasonably cover all the possible cases of data input. If the program
does not work properly, the algorithm will have to be redesigned.

Introduction to Programming © Dept. CS, UPC 18

www.manaraa.com

Example

• Design a program that

– given a natural number representing a certain
amount of time in seconds (N),

– calculates three numbers (h, m, s) that represent
the same time decomposed into hours (h),
minutes (m) and seconds (s)

– Example
• Given N=3815,

• Calculate h=1, m=3, s=35

Introduction to Programming © Dept. CS, UPC 19

www.manaraa.com

Specification

• Precondition:
– Specification of the data before the program is

executed

• Postcondition:
– Specification of the data after the program is

executed

• Example
– Precondition: N ≥ 0

– Postcondition: 3600h + 60m + s = N

Introduction to Programming © Dept. CS, UPC 20

www.manaraa.com

Specification

• Alternatively, specifications can describe the input and
output data of a program.

Input: the program reads a natural number representing a
number of seconds.

Output: the program writes the same time decomposed
into hours, minutes and seconds.

• Specifications can be described in many ways, e.g.
using plain English or formal logic propositions.

• Even when written in English, specifications must be
rigorous and unambiguous.

Introduction to Programming © Dept. CS, UPC 21

www.manaraa.com

A bad specification

• Precondition: N ≥ 0

• Postcondition: 3600h + 60m + s = N,

Introduction to Programming © Dept. LSI, UPC 22Introduction to Programming © Dept. CS, UPC 22

www.manaraa.com

A bad specification

• Does the specification really describe what the
program is supposed to calculate?

• Example

– Assume N = 3815

– The solution h=1, m=3, s=35 meets the
specification (13600 + 360 + 35 = 3815)

– But the solutions h=0, m=30, s=2015 and
h=0, m=0 and s=3815 also meet the specification.
What’s wrong?

Introduction to Programming © Dept. CS, UPC 23

www.manaraa.com

A good specification

• Precondition: N ≥ 0

• Postcondition: 3600h + 60m + s = N,
0 <= s < 60, 0 <= m < 60

• The solution h=1, m=3, s=35 fulfils the
specification.

• The solutions h=0, m=30, s=2015 and
h=0, m=0, s=3815 do not.

Introduction to Programming © Dept. CS, UPC 24

www.manaraa.com

Algorithms
• An algorithm:

– h = N / 3600 (integer division)
– m = (N mod 3600) / 60 (mod: remainder)
– s = N mod 60

• Another algorithm:
– s = N mod 60
– x = N / 60
– m = x mod 60
– h = x / 60

• Many algorithms may exist to solve the same problem.
Use the most efficient one whenever possible. But,
which one is the most efficient? There is no easy answer.

Introduction to Programming © Dept. CS, UPC 25

www.manaraa.com

Program in C++
#include <iostream>

using namespace std;

// This program reads a natural number that represents an amount
// of time in seconds and writes the decomposition in hours,
// minutes and seconds

int main() {

int N;

cin >> N;

int h = N / 3600;
int m = (N % 3600) / 60;

int s = N % 60;

cout << h << " hours, " << m << " minutes and "
<< s << " seconds" << endl;

}

Introduction to Programming © Dept. CS, UPC 26

www.manaraa.com

Execution

> decompose_time

3815

1 hours, 3 minutes and 35 seconds

> decompose_time

60

0 hours, 1 minutes and 0 seconds

Introduction to Programming © Dept. CS, UPC 27

