
www.manaraa.com

Introduction to Programming
(in C++)

Introduction

Jordi Cortadella, Ricard Gavaldà, Fernando Orejas

Dept. of Computer Science, UPC



www.manaraa.com

Outline

• Programming examples

• Algorithms, programming languages and 
computer programs

• Steps in the design of a program
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First program in C++

#include <iostream>
using namespace std;

// This program reads two numbers and
// writes their sum

int main() {

int x, y;

cin >> x >> y;
int s = x + y;
cout << s << endl;

}
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cin

cout> sum
8 13
21
> sum
-15 9
-6
>
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Calculate xy

• Algorithm: repeated multiplication
x  x  x    x
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y times

y x i p=xi

4 3 0 1

4 3 1 3

4 3 2 9

4 3 3 27

4 3 4 81
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Calculate xy

#include <iostream>
using namespace std;

// Input:  read two integer numbers, x and y,
//         such that y >= 0
// Output: write xy

int main() {
int x, y;
cin >> x >> y;

int i = 0;
int p = 1;
while (i < y) { // Repeat several times (y)

i = i + 1;
p = px;    // p = xi

}
cout << p << endl;

}
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Prime factors

• Decompose a number in prime factors

– Example: input 350 output 2  5  5  7

• Intuitive algorithm:

– Try all potential divisors d, starting from 2

• If divisible by d, divide and try again the same divisor

• If not divisible, go to the next divisor

– Keep dividing until the number becomes 1
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Prime factors
n d divisible write

350 2 yes 2

175 2 no

175 3 no

175 4 no

175 5 yes 5

35 5 yes 5

7 5 no

7 6 no

7 7 yes 7

1 finish
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The algorithm will never write a non-prime factor. Why ?
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Prime factors
#include <iostream>
using namespace std;

// Input:  read a natural number n > 0
// Output: write the decomposition in prime factors

int main() {
int n;
cin >> n;
int d = 2;  // Variable to store divisors

// Divide n by divisors from 2 in ascending order
while (n != 1) {

if (n%d == 0) { // Check if divisible
cout << d << endl;
n = n/d;

}
else d = d + 1;

}
}

Introduction to Programming © Dept. CS, UPC 9



www.manaraa.com

ALGORITHMS, PROGRAMMING 
LANGUAGES AND COMPUTER 
PROGRAMS
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An algorithm

• An algorithm is a method for solving a 
problem. It is usually described as a sequence 
of steps.

• Example: How can we find out whether a 
number is prime?
– Read the number (N).

– Divide N by all numbers between 2 and N-1 and 
calculate the remainder of each division.

– If all remainders are different from zero, the 
number is prime. Otherwise, the number is not 
prime.
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A programming language

• A programming language is a language used to 
describe instructions for a computer.

• What’s in a programming language?
– Data (numbers, strings, structures, …)
– Instructions (arithmetic, sequence, repetition, …)

• A programming language has very strict syntax
and semantics, as it must be understood by a 
computer!
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A computer program

• A computer program is an algorithm written in a in a 
programming language that executes a certain task.

• Examples of tasks a computer program can execute:

– Calculate the square root of a number

– Find the number of times the word “equation” appears in 
a math book

– Play a music file

– Find the shortest path between two cities
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A computer system

CPU

Instruction
Memory

Data
Memory

Input devices
(keyboard, mouse,  
microphone, etc.)

Output devices
(display, printer, 
speakers, etc.)

Program
(machine 
language)

Program
(high-level 
language)

Compiler

Loader
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This course:
• Design of programs
• Language: C++ 



www.manaraa.com

High-level language
• Computers understand very low-level instructions

(machine language).

• Software is usually constructed using high-level languages.
– Higher productivity
– Better readability
– Simpler debugging
– But some time and memory efficiency may be lost

• A compiler can translate a high-level language into machine 
language automatically.

• There is a huge number of programming languages: C, C++, Java, 
Pascal, PHP, Modula, Lisp, Python, Excel, Fortran, Cobol, APL, Basic, 
Tcl, Ruby, Smalltalk, Haskell, Perl, SQL, Prolog, …
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Assembly and machine language
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(From http://en.wikipedia.org/wiki/Assembly_language)

http://en.wikipedia.org/wiki/Assembly_language
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STEPS IN THE DESIGN OF A 
PROGRAM
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Steps in the design of a program
1. Specification

– The task executed by the program must be described rigorously 
(without ambiguities).

2. Design of the algorithm
– The method for executing the task must be selected and designed in 

such a way that the program is correct according to the specification. 

3. Coding in a programming language
– The algorithm must be written in a programming language that can 

be executed by the computer.

4. Execution
– The program must be executed with a set of examples that 

reasonably cover all the possible cases of data input. If the program 
does not work properly, the algorithm will have to be redesigned.
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Example

• Design a program that

– given a natural number representing a certain 
amount of time in seconds (N),

– calculates three numbers (h, m, s) that represent 
the same time decomposed into hours (h), 
minutes (m) and seconds (s)

– Example
• Given N=3815,

• Calculate h=1, m=3, s=35
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Specification

• Precondition:
– Specification of the data before the program is 

executed

• Postcondition:
– Specification of the data after the program is 

executed

• Example
– Precondition: N ≥ 0

– Postcondition: 3600h + 60m + s = N
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Specification

• Alternatively, specifications can describe the input and 
output data of a program.

Input: the program reads a natural number representing a
number of seconds.

Output: the program writes the same time decomposed
into hours, minutes and seconds.

• Specifications can be described in many ways, e.g. 
using plain English or formal logic propositions.

• Even when written in English, specifications must be 
rigorous and unambiguous.
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A bad specification

• Precondition: N ≥ 0

• Postcondition: 3600h + 60m + s = N,
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A bad specification

• Does the specification really describe what the 
program is supposed to calculate?

• Example

– Assume N = 3815

– The solution h=1, m=3, s=35 meets the 
specification (13600 + 360 + 35 = 3815)

– But the solutions h=0, m=30, s=2015 and
h=0, m=0 and s=3815 also meet the specification.
What’s wrong?
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A good specification

• Precondition: N ≥ 0

• Postcondition: 3600h + 60m + s = N,
0 <= s < 60,  0 <= m < 60

• The solution h=1, m=3, s=35 fulfils the 
specification.

• The solutions h=0, m=30, s=2015 and
h=0, m=0, s=3815 do not.
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Algorithms
• An algorithm:

– h = N / 3600                               (integer division)
– m = (N mod 3600) / 60             (mod: remainder)
– s = N mod 60

• Another algorithm:
– s = N mod 60
– x = N / 60
– m = x mod 60
– h = x / 60

• Many algorithms may exist to solve the same problem. 
Use the most efficient one whenever possible. But, 
which one is the most efficient? There is no easy answer.
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Program in C++
#include <iostream>

using namespace std;

// This program reads a natural number that represents an amount 
// of time in seconds and writes the decomposition in hours,
// minutes and seconds

int main() {

int N;

cin >> N;

int h = N / 3600;
int m = (N % 3600) / 60;

int s = N % 60;

cout << h << " hours, " << m << " minutes and "
<< s << " seconds" << endl;

}
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Execution

> decompose_time

3815

1 hours, 3 minutes and 35 seconds

> decompose_time

60

0 hours, 1 minutes and 0 seconds
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